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Abstract 
 
The hepatitis B virus (HBV) is a major cause of cirrhosis and hepatocellular carcinoma worldwide. 

Despite an effective vaccine the prevalence of chronic infection remains high. Current therapy is 

effective at achieving on-treatment but not off-treatment viral suppression. Loss of hepatitis B 

surface antigen (HBsAg), the best surrogate marker of off-treatment viral suppression, is 

associated with improved clinical outcomes. Unfortunately, this endpoint is rarely achieved with 

current therapy because of their lack of effect on covalently closed circular DNA, the template of 

viral transcription and genome replication. Major advancements in our understanding of HBV 

virology along with better understanding of immunopathogenesis have led to the development of 

a multitude of novel therapeutic approaches with the prospect of achieving functional cure (HBsAg 

loss) and perhaps complete cure (clearance of cccDNA and integrated HBV DNA). This review 

will cover current best practice for managing chronic HBV infection and emerging novel therapies 

for HBV infection and their prospect for cure. 
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Introduction 

 

The hepatitis B virus (HBV) is a small hepatropic DNA virus that has been infecting humans for 

millennia. An ancestral strain was likely present in hunter-gatherers during the early Holocene 

period (~20,000-12,000 years ago).[1]. During human evolution, spread of HBV was likely 

facilitated by the establishment of agrarian societies in the Neolithic and Bronze Ages.[2] 

Currently, it is estimated that over 2 billion persons have been exposed to HBV, of whom 296 

million (~3.7% of the human population) have chronic infection [3, 4]. Chronic HBV infection is 

responsible for ~820,000 deaths annually worldwide from complications of cirrhosis and 

hepatocellular carcinoma (HCC) [5]. Despite the availability of an effective vaccine, ~1.5 million 

new infections occur annually. 

 

Nevertheless, the HBV vaccine has had a profound impact on the prevalence of chronic HBV 

infection and complication rate, particularly in high prevalence regions.[6, 7] Given the significant 

burden on global public health, the World Health Organization (WHO) has set a goal of complete 

eradication of HBV by 2030, defined as a 65% reduction in mortality and a 90% reduction in 

incidence compared with the baseline levels obtained in 2015.[8]. Currently, only 12% of countries 

are on track to meet WHO elimination targets.[9] 

 
 

HBV lifecycle  

 

The intact virion or Dane particle has an outer lipid envelope that surrounds a viral nucleocapsid 

containing the viral DNA and polymerase. The genome is partially double-stranded DNA with four 
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overlapping open reading frames that encode for seven viral proteins: polymerase, core, hepatitis 

B e antigen (HBeAg), large, middle, and small HBsAg and X protein.[10]. 

 

The viral lifecycle is illustrated in Figure 1. During replication, double-stranded linear DNA 

(dslDNA) forms are produced (~5-10%) that may integrate randomly into the host genome by 

utilizing random sites of host cell DNA breaks.[11] Apart from being a constant source of RNA 

and viral proteins, integration is also considered to be a contributor to the development of HCC. 

A substantial proportion of HBsAg may be derived from integrated HBV DNA, particularly among 

HBeAg negative patients,[12], Figure 1, suggesting that HBsAg loss may ultimately require the 

elimination of integrated HBV DNA.  

 

Immunopathogenesis of HBV 

  

The immune response contributes to both HBV clearance and liver injury. HBV does not readily 

activate the intracellular innate defense mechanisms including type I IFN pathway [13, 14]. 

However, HBV replication is inhibited by pharmacological activation of type I/III IFNs and 

intracellular antiviral sensors such as the toll like receptors (TLRs) and retinoid acid inducible 

gene-I (RIG-I) like receptors as well as exogenous IFN therapy [15]. HBV can also induce type III 

IFN through the interaction between the HBV pregenomic RNA and RIG-I [16] and with a biphasic 

interferon stimulated gene (ISG) induction in hepatocytes in-vitro [17]. In addition, natural killer 

(NK) and NKT cells can be activated early in acutely HBV-infected patients [18]. Thus, once HBV 

replication is established in hepatocytes, type III IFN, and activation of NK and Kupffer cells may 

help to modulate viral replication and viral spread during the early stages of infection.  

 

As for the adaptive immune response, T-cells play a key role in HBV clearance and liver disease 

pathogenesis as shown in experimental animal models [19]. CD8 T-cells directly recognize and 
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kill (or cure) virus-infected hepatocytes that express viral epitopes on class I MHC, whereas CD4 

T-cells provide critical T-cell help and orchestrate the overall adaptive immune response. In 

acutely HBV-infected patients, spontaneous viral clearance and disease resolution is 

characterized by a broadly specific and durable antiviral CD8 and CD4 T-cell responses as well 

as HBsAg-specific neutralizing antibody response. Importantly, memory T-cell response to HBV 

can persist for decades after clinical resolution of acute HBV infection, maintained by trace 

amounts of virus in-vivo [20] and likely mediating virus control—raising the possibility for their role 

for sustained virus control of HBV post-therapy. Similarly, a critical role for B-cells in HBV control 

is suggested by HBV reactivation by immunosuppressive regimens that deplete B cells [21, 22].  

 

Evolution of acute HBV infection to chronic likely involves both host and viral factors [23, 24], 

although precise mechanisms are not well defined. Established chronic HBV infection is 

characterized by both HBV-specific and global T- [25, 26] and B-cell dysfunction [27, 28], due to 

prolonged exposure to viral antigens and inflammatory mediators that leads to immune 

exhaustion with the induction of regulatory pathways and immune checkpoints including 

regulatory T-cells, programmed cell death protein 1 (PD1)[29] and cytotoxic T lymphocyte-

associated antigen-4 (CTLA-4) [26], in addition to altered gammadelta T-cells[30] and metabolic 

immune dysregulation through myeloid derived suppressor cells and arginase [31] and antiviral 

T-cell elimination through activated NK cells and death pathways (e.g., Bim) [31, 32]. Lacking 

adaptive immune control, non-specific inflammatory infiltrates combining innate and adaptive 

immune cells accumulate in HBV-infected liver and promote hepatocellular injury and fibrosis 

without virus suppression [33]. Thus, immune-mediated HBV therapy requires a fine balance 

between immune control of the virus and hepatocellular injury to avoid adverse clinical 

consequences. 

 

Preventing infection  
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HBV vaccination has resulted in a significant reduction in both disease prevalence and 

complications of HBV including HCC [6, 7]. In the U.S., the Advisory Committee on Immunization 

practices (ACIP)[34] recommends vaccination of all infants, children, adolescents, and adults 

through 59 years of age as well as adults >60 years with risk factors. Additional information 

regarding available infant, child, adolescent and adult vaccines, vaccinee schedules and at-risk 

populations are provided in Supplementary Tables 1 and 2.    

 

Treatment 

 

Goals of treatment 

The primary goal of therapy is to prevent cirrhosis, development of HCC and liver-related 

mortality. However, these endpoints take decades to develop. Therefore, studies evaluating 

therapies for chronic HBV infection have relied on surrogate endpoints. These include 

undetectable HBV DNA using a sensitive PCR-based assay, normalization of serum alanine 

aminotransferase (ALT), loss of HBeAg, loss of HBsAg and histological improvement. HBsAg loss 

is considered the best endpoint because it is associated with durable suppression of HBV DNA 

and improvement in clinical outcomes such as hepatic decompensation, hepatocellular carcinoma 

and liver-related death.[35, 36] However, as reported in two meta-analyses the rate of 

spontaneous and treatment-related HBsAg loss is low, approximately 1% annually.[37, 38] 

  

Indications for treatment 

Chronic hepatitis B (CHB) is a dynamic disease characterized by frequent fluctuations in disease 

activity. Historically, HBeAg status, HBV DNA and ALT levels are used to assess disease activity. 

The three major liver societies, the American Association for the Study of Liver Diseases 

(AASLD), the European Association for the Study of the Liver Diseases (EASL) and the Asian 

Pacific Association for the Study of the Liver (APASL) have provided guidance on indications for 
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treatment, Table 1. [39-41] Additionally, the World Health Organization (WHO) has developed a 

more simplified approach to treatment for low and middle income countries that may lack access 

to viral load testing.[42] All guidelines strongly agree that patients with decompensated liver 

disease, cirrhosis and those with active disease (defined as those with elevated HBV DNA and 

ALT levels) should receive treatment. There are minor regional differences in the choice of HBV 

DNA level (for example HBV DNA level of 20,000 IU/ml (AASLD and APASL) or 2,000 IU/mL 

(EASL) in an HBeAg positive patient) and ALT cut-offs (either twice the laboratory upper limit of 

normal (ULN) (APASL and EASL), >ULN if moderate liver necroinflammation or fibrosis is present 

(EASL), or gender specific ALT cut-offs -35 U/L for males and 25 U/L for females (AASLD)) to 

initiate therapy. Similarly, there is general agreement that patients whose disease is inactive 

(HBeAg negative with low HBV DNA (<2,000 IU/mL) and normal ALT levels can be safely 

observed without the need for treatment. There is some controversy on how patients with elevated 

HBV DNA but normal (≤1xULN) or mildly elevated ALT levels (>1-<2xULN) should be managed. 

In these situations, obtaining additional evidence on disease severity either through a liver biopsy 

or non-invasive assessment of fibrosis is advised to assist in decision making. Among non-

invasive tests, transient elastography (TE)[43] or shear wave elastography (SWE)[44] generally 

have higher diagnostic accuracy over serum biomarkers such as APRI and FIB-4 and are 

therefore preferred for assessing fibrosis in the absence of a liver biopsy, Supplementary Tables 

3a and 3b. Non-invasive tests perform better at excluding than establishing advanced 

fibrosis/cirrhosis. Additionally, other factors such as age over 40 years, family history of HCC, 

lengthy disease duration, HBsAg level ≥1,000 IU/mL and a patient’s willingness to receive 

treatment should be considered in the decision to recommend therapy. [39-41, 45, 46]. Other 

indications for treatment or prophylaxis are listed in Table 2. 

 

An alternate and more simplified approach to treatment being put forth by some experts, but not 

endorsed by any of the major liver society guidelines, is a “treat all” approach in which any HBsAg 
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positive individual with detectable viremia regardless of ALT level would receive treatment. In the 

case of HBeAg positive patients with markedly elevated HBV DNA (>108 IU/mL) and normal ALT 

levels (immunetolerant or HBeAg positive chronic infection with no clear evidence of 

hepatocellular damage), the recommendation to treat is driven by a desire to limit the risk for HBV-

specific T-cell depletion, DNA integrations that drive HCC risk, silent fibrosis progression, and risk 

of transmission. Indeed, this approach is supported by the Risk Evaluation of Viral Load Elevation 

and Associated Liver Disease (REVEAL) study[47, 48] which showed a relationship between 

elevated HBV DNA levels and subsequent development of cirrhosis and HCC and a Korean study 

reporting that untreated immunetolerant patients have higher risk of HCC and 

death/transplantation than nucleos(t)ide analogue treated immuneactive-phase.[49] However, as 

data from the REVEAL study was obtained from an older, predominantly male, HBeAg negative 

cohort, caution is advised in extrapolating to a younger HBeAg positive cohort. Also, in the latter 

study from Korea, the HCC risk was lowest among patients with highest HBV DNA levels and 

normal ALT levels (true immunetolerant patients). Notably in that study, the mean age of the 

immunetolerant patients was 38 years, thus, many or most would have met the three liver 

association guidelines for treatment. Furthermore, there is currently no evidence that lowering 

viral load would necessarily reduce HCC incidence in patients with immunetolerant disease. 

Moreover, spontaneous HBeAg seroconversion occurs in a majority of patients with low rates of 

progression to HBeAg negative immuneactive disease, cirrhosis or HCC,[50] achieving 

undetectable HBV DNA is challenging, integration cannot be prevented, and paired liver biopsy 

studies showed minimal if any fibrosis progression in patients with immunetolerant disease.[51] 

However, some studies suggest unacceptably high rates of HCC and other clinical outcomes 

among indeterminate/grey zone patients (HBeAg negative with elevated HBV DNA and mildly 

elevated ALT levels) or who do not meet criteria for treatment according to APASL, AASLD and 

EASL and that treatment may be of benefit to these patients.[52-54] Future studies are needed 
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to address management of these controversial group of patients. Until such results are available, 

we recommend a “case by case” approach, considering presence of risk factors for disease 

progression and HCC and patient’s willingness for treatment for cases outside the guideline 

treatment criteria. Please see supplementary data for more in-depth discussion of management 

of controversial patients.   

 

Current treatment options 

There are seven licensed agents for treatment of chronic HBV infection in the U.S., standard 

interferon alfa-2b (no longer available in the U.S. and Europe), pegylated interferon alfa-2a, 

lamivudine (LAM), adefovir, telbivudine, entecavir (ETV), tenofovir disoproxil fumarate (TDF) and 

tenofovir alafenamide (TAF). Pegylated interferon is preferred over standard interferon due its 

more favorable pharmacokinetics and dosing schedule (once weekly versus thrice weekly). 

Among the nucleos(t)ide analogues, entecavir, TDF and TAF are recommended over LAM, 

adefovir, telbivudine because of their greater potency and lower rates of antiviral resistance. The 

sustained, on-treatment viral suppression that can be achieved with these agents is associated 

with less progression to cirrhosis or even reversal of cirrhosis, prevention of decompensation, 

reduction but not prevention of HCC and lower mortality. 

 

Two treatment strategies are recommended by liver society guidelines, Table 3. One is a finite 

48-week treatment course with pegylated interferon alfa-2a and the other is long-term therapy 

with one of the recommended nucleos(t)ide analogues. 

 

Pegylated interferon alfa-2a 

The mechanism of action of pegylated interferon alfa-2a is not fully understood but the drug has 

both antiviral and immunomodulatory properties. The recommended dose for both HBeAg positive 

and negative patients is 180 g once weekly by subcutaneous (SC) injection for 48 weeks. 
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Pegylated interferon can be discontinued early for futility among HBeAg positive patients, if at 

week 12 HBsAg levels are ≥20,000 IU/ml for genotypes B and C, or no decline of HBsAg levels 

are observed for genotypes A and D and at week 24 if HBsAg levels ≥20,000 IU/ml in patients 

with genotypes A-D. Pegylated interferon can be stopped among HBeAg negative patients with 

genotype D at week 12 if there is no decrease in HBsAg levels and <2 log10 IU/ml reduction in 

serum HBV DNA. In addition to the finite dosing schedule, other advantages of pegylated 

interferon are a relatively high rate of HBeAg loss (>30%) in HBeAg positive patients [55, 56] and 

the potential to clear HBsAg (2-7% in HBeAg-positive and 4% in HBeAg-negative patients) with 

a relatively short duration of therapy, especially in patients with HBV genotypes A and B. 

Moreover, HBeAg loss and HBsAg loss are durable. Disadvantages of pegylated interferon 

include the need for administration by SC injection as well as the numerous substantial adverse 

events.[57] Additionally, peginterferon is contraindicated in patients with decompensated cirrhosis 

and compensated cirrhosis with clinically significant portal hypertension, due to the risk of hepatic 

decompensation, and during pregnancy. Some studies have shown benefit in extending treatment 

duration beyond 48 weeks especially among HBeAg negative patients[58, 59] but in practice this 

is difficult due to poor patient tolerance.  

 

Nucleos(t)ide analogues 

Nucleos(t)ide analogues, incorporated into nascent DNA by the HBV reverse transcriptase, inhibit 

viral replication by functioning as DNA chain terminators.[60] They are more potent inhibitors of 

viral replication compared to pegylated interferon but recrudescence of viral replication following 

their withdrawal is common due their lack of activity on covalently closed circular DNA (cccDNA). 

Recently, it was shown that nucleos(t)ide analogues (tenofovir) may decrease the number of 

transcriptionally active distinct HBV-host DNA integrations among patients with mild CHB.[61] 

However, it remains uncertain if nucleos(t)ide analogues can alter clonal expansion of 

hepatocytes carrying unique viral integrations, the expression level of an integrated sequence or 
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if reducing integrations would result in a lower incidence of HCC. Efficacy of recommended 

nucleos(t)ide analogues are shown in Table 3. Rates of HBsAg loss after 1 year are 1-3% in 

HBeAg positive and ≤1% in HBeAg negative patients. In comparison to pegylated interferon, 

nucleos(t)ide analogues are orally administered, are well tolerated, and have an excellent safety 

profile. There is a small risk for nephropathy and bone loss, particularly with TDF. They may be 

used in patients with decompensated cirrhosis and in pregnant women as treatment or for 

prevention of mother-to-infant transmission. In the absence of co-morbid conditions, selection of 

one nucleos(t)ide analogue over another is based on patient preference and cost. In patients with 

renal or bone disease, entecavir or TAF are preferred. For treatment experienced patients or HIV-

HBV co-infection, TDF or TAF are the preferred agents due to the high rate of resistance to 

entecavir in LAM-experienced patients. In pregnant women, TDF is preferred because data on 

the safety of TAF[62-64] are not yet as extensive as TDF and ETV is contraindicated during 

pregnancy. 

 

Special populations 

Treatment of special populations is beyond the scope of this review and readers are referred to 

guidelines that cover this topic.[39-41] An abridged overview of management is provided in 

Supplementary Table 4. Patients scheduled to receive immunosuppressive or cytotoxic therapy 

are at risk for reactivation of HBV infection. Consequently, all patients should be screened for 

current or past HBV infection using HBsAg and anti-HBc. Those who test positive for HBV markers 

should be further risk stratified based on the immunosuppressive regimen. Patients at high risk 

for HBV reactivation (e.g., use of anti-CD20 agent) should receive prophylactic antiviral therapy. 

Those at moderate risk (e.g., anti-TNF or low dose steroids) could either receive prophylactic 

antiviral therapy or be monitored closely with HBV DNA and ALT testing every 3 months. If 

reactivation occurs, patients should immediately start antiviral therapy. Patients at low risk (short 

term steroids) do not require monitoring for reactivation. The preferred prophylactic treatment of 
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choice is either TDF, TAF or ETV. Ideally, treatment should be initiated 2-4 weeks before a 

planned course of immunosuppression and continued for an additional 6 months after 

immunosuppression is stopped. An exception is for patients receiving B-cell depleting regimens 

(e.g., anti-CD20) where treatment should continue for 12-18 months after immunosuppression is 

stopped. [39-41, 65] 

 
Endpoints of treatment  
 
Pegylated interferon is administered for a finite duration of 48 weeks. Among HBeAg positive 

patients, pegylated interferon-related HBeAg seroconversion is a durable endpoint. 

Approximately twenty-five percent of patients will have sustained suppression of HBV DNA < 

2000 IU/mL in the short-term (6-12 months off-treatment).[66] In contrast, among HBeAg negative 

patients, only 19% can maintain HBV DNA suppression < 400 copies/mL, off-treatment.[67] 

 

The optimal endpoint during therapy with nucleos(t)ide analogues is HBsAg loss that is confirmed 

on at least two occasions, with or without development of anti-HBs. Nucleos(t)ide analogues can 

be discontinued in non-cirrhotic, HBeAg positive patients who achieve HBeAg seroconversion 

and undetectable HBV DNA and who receive at least 12 months of consolidation therapy. Post-

treatment monitoring is advised (every 3 months) for at least a year to detect a return of active 

disease. For HBeAg negative patients, AASLD recommends indefinite therapy until HBsAg loss 

occurs. However, APASL and EASL recommend that treatment can be discontinued in selected 

patients without cirrhosis who achieve undetectable HBV DNA and normal ALT levels for a period 

of 2-3 years. This recommendation is based on data reporting rates of HBsAg loss of ~20% 

among Caucasian patients and 2-3% among Asian patients 3 years after withdrawal and 20-30% 

maintaining a low HBV DNA (<2,000 IU/mL) and normal ALT after withdrawal of nucleos(t)ide 

analogues.[68] HBsAg cutoffs of <1,000 IU/mL among Caucasians and <100 IU/mL among 

Asians were associated with the highest rates of HBsAg loss.[69] In practice, virological relapse 
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is almost universal, withdrawal flares are observed in 10-30% of patients within the first 3 months 

of stopping treatment and almost half of patients require re-initiation of treatment. Thus, the 

decision to withdraw treatment requires careful deliberation with the patient and the patient must 

agree to close monitoring after withdrawal of therapy. Patients with cirrhosis should not stop 

antiviral therapy due to the risk of hepatic decompensation. 

 

 
Monitoring untreated patients and Screening 
 
Due to the dynamic nature of chronic HBV infection, untreated patients should be monitored, with 

serial HBV DNA and ALT levels every 3-6 months, for evidence of disease progression until 

spontaneous HBsAg loss occurs. Among HBeAg positive patients HBeAg status should be 

checked every 6-12 months. Among HBeAg negative patients with low HBV DNA levels (<2,000 

IU/mL and normal ALT level, (inactive carrier/ HBeAg negative chronic infection)) HBV DNA and 

ALT levels should be checked every 3 months for one year to confirm inactive disease after which 

they may be monitored every 6-12 months. Testing for HBsAg loss should be performed annually. 

If available, monitoring quantitative HBsAg levels annually in HBeAg negative patients with HBV 

DNA levels <2,000 IU/mL may be helpful to allow HCC risk stratification and determining the 

monitoring schedule. A non-invasive assessment of liver fibrosis should be considered every 2-3 

years. 

 

HCC surveillance is considered cost-effective if the annual risk of HCC is ≥0.2%. Consequently, 

all patients with cirrhosis should be screened with ultrasound with or without alfa fetoprotein (AFP) 

testing every 6 months. HBsAg-positive adults without cirrhosis but considered at high risk for 

HCC including Asian or Black men over 40 years and Asian women over 50 years of age, persons 

with a first-degree relative with a history of HCC, or persons with hepatitis D virus (HDV) should 

also undergo screening every 6 months. After HBsAg loss, surveillance for HCC should continue 
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for patients with cirrhosis, those who have a first-degree relative with HCC, or a long duration of 

infection (>40 years for males and >50 years for females). 

 
 
Limitations of current therapy 
 
Although current therapy is associated with less outcomes, it is not curative and does not eliminate 

HCC risk. This is due to their limited effect on cccDNA and integrated HBV DNA. Additionally, 

current treatment does not restore the immune dysfunction that is characteristic of chronic HBV 

infection. Thus, there is an urgent need for short duration regimens that can achieve high rates of 

HBsAg loss. 

 
 
Novel treatments 

 

The development of curative therapy for HCV infection and limitations of current therapy for HBV 

infection has renewed interest in curing chronic HBV infection. A more comprehensive 

understanding of the HBV lifecycle and immunopathogenesis of persistent infection coupled with 

innovations in drug development and delivery have led to multiple new approaches to treat chronic 

HBV infection. These include innovative means to interrupt viral production, Table 4, Figure 1 

and/or to restore or boost the exhausted immune response, Table 4, Figure 2. Along with the 

development of novel therapy, newer tools to monitor the virological and immunological response 

such as HBV RNA, HBcrAg and cytokine panels will be needed. An in-depth review of these 

markers is beyond the scope of this review, but readers are directed to an excellent review on the 

topic.[70] 

 

The focus of novel therapy is to achieve HBsAg loss or “functional cure”. A true cure or “complete 

cure” would require eradication of the non-integrated cccDNA as well as integrated HBV DNA. 

Currently, this is not technically feasible. An alternate but less desirable goal is sustained off-
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treatment inhibition of viral replication or “partial cure”. Although this is associated with improved 

clinical outcomes, the response is often not durable.  

 

Direct Antiviral agents in development 

 

Agents Targeting Viral Entry 

The premise of targeting viral entry is to block new rounds of hepatocyte infection, thereby 

preventing cccDNA formation and reducing the cccDNA pool. Bulevirtide (previously Myrcludex 

B), is a synthetic, N-acylated pre-S1 peptide that irreversibly blocks the sodium taurocholate co-

transporting polypeptide (NTCP) receptor, thereby preventing viral entry.[71] Bulevirtide is 

conditionally approved by the European Medicine Agency (EMA) for the treatment of chronic HDV 

infection.[72] There is limited clinical data in the HBV mono-infected population. The results of a 

small unpublished study, indicated that bulevirtide administered at different doses for 12 weeks 

in patients with HBeAg negative CHB led to a ≥0.5 log IU/mL decline in HBsAg level at week 12 

in a minority of patients but none lost HBsAg.[73] Asymptomatic bile acid elevation was noted. 

These findings are perhaps not surprising given the relatively long half-life of cccDNA. It is 

predicted that treatment may have to be administered long-term to have any meaningful effect on 

HBsAg loss. Hepalatide is another NTCP receptor blocker currently being evaluated for CHB 

treatment in combination with pegylated interferon versus pegylated interferon alone in a double 

blind, placebo-controlled phase 2 study (NCT04426968).  

 

Rather than targeting the receptor, several monoclonal/polyclonal antibody preparations are 

being developed that bind to the N-terminal region of pre-S1, the site of viral interaction with the 

NTCP receptor.[74] In addition to blocking viral entry, monoclonal antibodies can lower viremia 

and the level of subviral particles and may cross-present viral antigens with stimulation of T-cells 

leading to HBsAg loss. GC1102 is a recombinant hepatitis B immunoglobulin currently in a phase 
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2 trial. VIR-3434, is a novel monoclonal antibody in a phase 1 study in virally suppressed patients 

(NCT04423393). Preliminary results suggest a rapid dose dependent decline in HBsAg levels 

without significant adverse events.[75] Further studies with longer term follow-up regarding safety 

and efficacy of entry inhibitors and monoclonal antibodies are eagerly awaited. 

 

Agents Targeting Viral Transcripts 

Another approach to inhibit viral production is to target the protein encoding mRNAs via RNA 

interference and antisense oligonucleotides (ASOs). A therapeutic advantage of this approach is 

that multiple viral transcripts may be silenced by a single siRNA/ASO because all HBV mRNAs 

share the same terminal 3 sequence. Potential advantages of an ASOs are its ability to interact 

with pre-mRNA, which permits targeting of splicing and increases the amount of target RNA 

sequence for ASO binding, which can also limit off-target effects and there is no requirement for 

a carrier vehicle. Conversely, GalNAc conjugation improves accumulation of siRNAs in the target 

organ and facilitates their cellular uptake 

 

Small interfering RNAs (siRNA) are short nucleic acid duplexes that bind to their target mRNA 

and induce the cellular RNA-induced silencing complex to degrade the targeted viral RNA. Their 

delivery and uptake can be enhanced using lipid nanoparticles or conjugation with N-

acetylgalactosamine. First generation siRNAs, ARC-520 and ARC-521 demonstrated proof-in-

principle, durable knockdown of target genes (HBsAg) in virally suppressed HBeAg positive and 

negative patients. However, development of these compounds was stopped due to toxicity from 

the delivery vehicle. Subsequently, studies with other siRNAs AB-729, JNJ-3989, RG6346 and 

VIR-2218 in viremic and virally suppressed patients on NAs demonstrated mean 1.5 to ~2.0 log10 

IU/mL decline in HBsAg levels following monthly administration over 2 to 4 months.[76-79] 

However, with extended dosing up to one year further decline in HBsAg levels was minimal.[79] 

Plateau in HBsAg decline suggests that long-term siRNA use is probably not a viable approach. 
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Rather the siRNA may be administered as induction therapy for a finite period to lower HBsAg 

levels and then followed by another agent such as an immune modulator e.g. peginterferon or 

therapeutic vaccine or alternatively as repeated short courses but the benefit of this latter 

approach is not proven. Suppression of HBsAg with AB-729 was shown to result in an increase 

in HBV-specific immune response in some but not all patients, providing another benefit of these 

agents.[80] 

 

ASOs are single-stranded DNA molecules that can bind to viral mRNA and induce their 

degradation via RNAseH1 or steric hindrance to prevent translation. Two anti-sense molecules, 

Bepirovirsen, (previously, IONIS-HBVRx or GSK3228836) and IONIS-HBVLRx (GSK33389404) 

are currently in phase 2a trials among nucleos(t)ide analogue-naïve and treated patients. 

Administration for four weeks resulted in greater declines among nucleos(t)ide analogue-treated 

patients 1.99 log10 IU/ml compared to nucleos(t)ide analogue-naïve patients 1.56 log10 IU/ml.[81] 

Reductions in HBsAg levels were durable in some patients up to six months off treatment. 

Recently, it was reported that the addition of bepirovirsen 300 mg for 24 weeks to ongoing 

nucleos(t)ide analogue therapy, resulted in HBsAg below the lower limit of quantitation in 28% 

(18/64) of patients at end of treatment.[82] 

 

Agents Targeting Core Protein 

 

The HBV core protein has multiple regulatory roles in the viral lifecycle and the host immune 

response, making it an attractive target for drug development. Its primary role is to serve as the 

structural protein of the viral nucleocapsid, the site of reverse transcription and replication of the 

viral genome. The core protein also regulates subcellular trafficking and release of the HBV 

genome, RNA metabolism, cccDNA transcription and inhibiting the host innate immune response.  
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Core protein allosteric modulators (CpAMs) are synthetically derived compounds that bind to a 

small hydrophobic pocket between core protein dimers and augment dimer-dimer interaction to 

modify nucleocapsid assembly.[83-91] CpAMs inhibit HBV replication through formation of 

aberrantly assembled nucleocapsids, or morphologically normal capsids devoid of pgRNA, or 

both. CpAMs are classified based on their mechanism of action. Type 1 CpAMs such as 

heteroaryldihydropyrimidine (HAP) derivatives lead to the formation of aberrantly assembled 

nucleocapsids. Type 2 CpAMs for example phenylpropenamides and sulfamoylbenzamides result 

in the formation of morphologically normal but empty nucleocapsids due to an inability to 

encapsidate the pre-genomic RNA. Some CpAMs may have additional effects, such as affecting 

the conversion of rcDNA to cccDNA. 

 

There is great interest in developing CpAMs due to their potent inhibition of viral replication and 

oral route of administration. At least a dozen CpAMs are in various stages of drug development, 

Table 4. CpAMs as a class are very effective at inhibiting HBV replication across all HBV 

genotypes. However, they must be combined with one or more antiviral agents of a different class 

because of rapid development of resistance when used as monotherapy. When combined with 

NAs in viremic patients, they generally lead to faster and greater inhibition of viral replication 

compared to NA alone and deeper suppression of HBV DNA in patients already treated with a 

NA.[83-85, 90] Thus, they may offer the potential to increase on-treatment response particularly 

in highly viremic patients. However, minimal changes in HBeAg and HBsAg levels with short term 

administration coupled with a high rate of virological relapse upon withdrawal of the CpAM and 

nucleos(t)ide analogue,[92] raises questions whether they could achieve functional cure with finite 

therapy.  

 

Agents Targeting the HBV Polymerase 
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Drugs targeting the reverse transcriptase function of the HBV polymerase are the most widely 

used agents to treat chronic HBV infection. Nucleos(t)ide analogues inhibit viral replication but 

not viral transcription or translation (i.e., viral antigen).[93] The focus of development of next 

generation nucleos(t)ide analogues are to improve their efficacy and safety, through novel 

prodrug approaches. 

  

ATI-2173 is a non-competitive, non-chain terminating, clevudine derivative able to inhibit the HBV 

polymerase via active site distortion.[94] In phase I studies, 28-day dosing resulted in a mean 

HBV DNA reduction of 2.8 log10IU/mL without any serious adverse events.[95] Expectedly, no 

changes were seen in HBsAg levels over the short dosing interval. Phase II studies are in 

progress (NCT04847440). Other new nucleos(t)ide analogue prodrugs, pradefovir, HS-10234 and 

NCO-48 fumarate, derived from adefovir and tenofovir respectively are designed to increase 

antiviral potency and reduce metabolite toxicity.[96-98] Preliminary data suggest similar 

effectiveness to TDF. Agents targeting the RNase H function of the HBV polymerase are in 

preclinical development.[99] 

 

Agents Targeting HBsAg Release 

As HBsAg loss defines functional cure, there is great interest in developing agents to reduce 

HBsAg levels and limit viral production. In addition, given that HBsAg circulates in vast quantities 

as subviral particles in chronic HBV infection, it is hoped that therapeutic HBsAg reduction might 

restore the immune response. Nucleic acid polymers (NAPs) are short, synthetic oligonucleotides 

able to interact with HBV subviral particles through a poorly understood mechanism.[100] It was 

proposed that NAPs may interfere with the assembly/release of HBV subviral particles.[101] In a 

small 40 patient study two NAPs, REP 2139 or REP 2165, were evaluated in combination with 

tenofovir and pegylated interferon and compared to tenofovir plus pegylated interferon for 48 

weeks. At the end of 48 weeks follow-up the addition of NAPs to the regimen was associated with 
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sustained suppression of HBsAg to below level of detection in 44% all of whom developed anti-

HBs compared to the tenofovir and pegylated interferon arm in which 37% achieved sustained 

suppression of HBsAg, of whom two-thirds developed anti-HBs.[102] Grade 3-4 ALT flares were 

observed in the majority of NAP treated patients, 90%, compared to 20% among non-NAP treated 

patients. Controlled studies with larger groups of patients are needed to further evaluate the 

efficacy and safety of NAPs. 

 

A similar approach to disrupting HBsAg secretion involves the use of S-Antigen Transport-

inhibiting Oligonucleotide Polymers (STOPS). Like NAPs, STOPS are single-stranded 

oligonucleotides that sequester cellular proteins necessary for HBsAg production.[103] STOPS 

were shown to have greater potency than NAPS in-vitro. However, results of a phase 1 study 

evaluating the STOPS agent ALG-010133 demonstrated no meaningful HBsAg reduction and 

further development of this compound has been discontinued.[104] 

 

Agents Targeting cccDNA 

Elimination of cccDNA within the hepatocyte nucleus is the key to curing chronic HBV infection. 

Several approaches to eliminate or silence cccDNA are in pre-clinical development. However, the 

potential for off-target effects is a major safety concern that may limit this exciting approach. 

 

Gene editing technology such as using zinc-finger nucleases (ZFNs), transcription activator-like 

effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats 

associated system 9 (CRISP/Cas-9) proteins are being evaluated to inactivate cccDNA by 

introducing targeted breaks in double stranded DNA that are then repaired by homologous repair 

creating mutations at the cleavage site. A study utilizing CRISPR/Cas9 systems from 

Streptococcus thermophilus on HBV infected cell lines was successful in eradicating 90% of HBV 

cccDNA[105]. However, several challenges need to be overcome before this approach can be 
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used in the clinic, including target specificity, safe and efficient delivery systems to the hepatocyte 

nucleus, and increasing editing efficiency to eliminate all cccDNA molecules.  

 

In the nucleus, cccDNA is organized into a chromatin-like structure which makes it amenable to 

epigenetic manipulation.[106] Several compounds have been shown in-vitro to silence cccDNA 

transcription. Interferon-α inhibits transcription of genomic and subgenomic RNAs derived from 

cccDNA, both in HBV-replicating cells in culture and in HBV-infected chimeric uPA/SCID mice 

repopulated with primary human hepatocytes.[107] Interestingly, the HBV X protein (HBX) which 

is essential for viral transcription has been shown to act through degradation of the host 

structural maintenance of chromosomes (Smc) complex, Smc5/6, which selectively blocks 

extrachromosomal DNA transcription. HBX destroys the Smc5/6 complex removing the brake 

on transcription and allowing hepatitis B virus gene expression to occur.[108, 109] Thus, 

targeting the HBX might be a viable approach to silencing cccDNA. Pevonedistat, a neuronal 

precursor cell-expressed developmentally down-regulated protein 8- (NEDD-8) activating 

enzyme inhibitor and dicoumarol, an inhibitor of NAD(P)H:quinone oxidoreductase 1 (NQO1) 

were shown to reduce HBX expression,[110, 111] restore Smc5/6 levels and suppress viral 

transcription in cultured hepatocytes [111] and in a humanized mouse model.[110] However, the 

observation that there is reactivation of cccDNA as soon as HBX becomes available again may 

be a major limitation to this approach. 

 
Finally, an interesting prospect for targeting cccDNA rests in the enhancement of the 

apolipoprotein B mRNA editing catalytic subunit 3A and 3B deaminases (APOBEC3A/B). 

Upregulation of APOBEC3A/B by interferon-α and lymphotoxin-b has been shown to lead to non-

cytolytic degradation of cccDNA in-vitro, but the degradation of the cccDNA pool is 

incomplete.[112] 
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Indirect Antiviral agents 

 

One of the unanswered questions related to therapy is whether cure can be achieved through a 

purely antiviral approach or if the addition of an immunemodulator will be necessary. Current 

immunological approaches have been targeting both innate and adaptive immune system to 

broadly bolster cellular defense and to promote HBV-specific adaptive immune response (Figure 

2). 

 

Targeting the Innate Immune system   

 

HBV is poorly sensed by the innate immune system and therefore is considered a stealth 

virus.[13, 14] However, the observation that certain cytokines (IFN-a, IFN-g, TNF-a, and IL-1a), 

produced by non-parenchymal liver cells, and LTβR-mediated activation  of  APOBEC 

(apolipoprotein B mRNA editing enzyme, catalytic polypeptide–like) or activation of retinoic acid-

inducible gene-I (RIG-I) can suppress or even eradicate HBV from infected hepatocytes through 

a non-cytolytic mechanism [16, 107, 112, 113] provides a rationale for developing exogenous 

activators of the innate immune response. Several agonists of pathogen recognition sensors, e.g., 

TLRs, RIG-I, and stimulator of interferon genes (STING) have been shown to induce production 

of interferon-stimulated genes (ISGs) and proinflammatory cytokines than can cytopathically or 

non-cytopathically clear virus. 

 

Agonists of innate immunity  

 

TLRs are expressed in many cell subsets (including immune cells) and play an important role in 

host defense as sensors of viral and bacterial pathogen-associated molecular patterns (PAMPs). 

Combination treatment with CpG oligodeoxynucleotides (CpG ODN) and entecavir was shown in 

Jo
urn

al 
Pre-

pro
of



 26 

the woodchuck model to suppress woodchuck hepatitis virus (WHV) viral load.[114] Several oral 

TLR-7/8 agonists are in clinical trials, including GS-9620, RO7020531, RG7795 (ANA773), 

RG7854, JNJ-4964 (AL-034/TQ-A3334), and GS-9688. 

 

Vesatolimod (GS-9620), a TLR-7 agonist, can activate intrahepatic dendritic cells among others, 

triggering the production of type I and II interferons and activating intra-hepatic NK and mucosal-

associated invariant T (MAIT) cells. In proof-of-principle studies, vesatolimod reduced viral load 

and HBsAg antigenemia in chimpanzees and woodchucks but not in humans.[115-117] 

Vesatolimod in untreated viremic and virally suppressed patients on NAs was well-tolerated but 

did not substantially reduce HBsAg level.[118, 119] Differences in response observed in animal 

and human studies may relate to use of sub-therapeutic doses in human compared to animal 

studies. 

 

GS-9688 (selgantolimod), a TLR-8 agonist, can activate intrahepatic dendritic cells, NK cells and 

MAIT cells and induce production of cytokines (IL-12/IL-18). In chronically WHV-infected 

woodchucks, short duration therapy with GS-9688 induced a sustained antiviral response and 

reduced WHV surface antigen (WHsAg) levels to below the limit of detection in half of the 

woodchucks.[120] Among virally suppressed patients, modest declines in HBsAg levels were 

seen. One patient (5%) achieved HBsAg loss and 16% HBeAg loss.[121] Selgantolimod induced 

dose dependent cytokine responses that did not correlate with HBsAg decline. 

 

Inarigivir (SB9200), an oral dinucleotide RIG-I and nucleotide-binding oligomerization domain-

containing protein 2 (NOD2) agonist in combination with TDF demonstrated dose dependent 

reduction in HBV DNA level with a maximal reduction of 3.26 log10[122], with serum ALT flares in 

10% of patients. Further development of this compound was discontinued due to a patient death 

possibly related to liver injury. 
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Cyclic GMP-AMP synthetase (cGAS) can recognize HBV DNA and activate its adaptor protein 

STING, leading to ISG56 expression thereby inhibiting nucleocapsid formation.[123] Additionally, 

activation of the cGAS STING pathway by dsDNA or cGAMP was shown to markedly inhibit HBV 

replication in cell and mouse models.[124] However, a recent study suggesting that human 

hepatocytes do not express STING raises questions whether such an approach will be clinically 

effective.[125]  

 

Lymphotoxin-b–mediated activation of APOBEC or activation of RIG-I was reported to suppress 

HBV replication by cytidine deamination, leading to cccDNA degradation.[112] Lymphotoxin-a 

(LTa), lymphotoxin-b (LTb), and cluster of differentiation (CD) 258 are the natural ligands of 

lymphotoxin-b receptor (LTbR). The risk of severe side effects with these cytokines limits their 

therapeutic use. However, activating the receptor using other ligands, tetravalent bispecific (BS1) 

and bivalent (CBE11) agonistic anti-LTβR antibodies to non-cytolytically degrade cccDNA has 

been demonstrated as a proof-in-principle for this approach.[112]  

 

Agents stimulating and restoring adaptive immunity  

 

Several strategies have been explored to re-invigorate the weak adaptive immune responses to 

HBV with a key consideration being to induce a therapeutic response safely without causing 

severe hepatocellular damage and clinical decompensation. 

 

Checkpoint Blockade 

 

Given the success of treating certain malignancies with checkpoint inhibitors, there is interest in 

using this approach for chronic HBV infection. However, use of these agents in the clinic in a non-
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malignant setting has been constrained by concerns for widespread hepatocyte death 

precipitating acute liver failure coupled with the risk of autoimmunity. In-vitro, incubation of T-cells 

from patients with chronic HBV infection with anti-PD1 antibodies led to proliferation of CD8+ cells 

with increased production of IL-2 and interferon gamma [126]. In a small pilot study, the PD-1 

inhibitor nivolumab was evaluated with and without the therapeutic vaccine GS-4774 in virally 

suppressed patients on nucleos(t)ide analogue therapy [127]. Minor declines in HBsAg were 

noted. One patient achieved HBsAg sero-conversion, that was preceded by grade 3 ALT flare. 

No serious adverse events were observed. A recent phase 2 study evaluated the PD-1 

monoclonal antibody envafolimab (ASC22) in nucleos(t)ide analogue experienced patients. A 

maximum HBsAg reduction of 1.2 Log10 IU/mL was seen without significant ALT flares.[128] The 

treatment was well tolerated. Another approach to targeting PD-1 pathway involves degradation 

of the PD-1 ligand (PD-L1) mRNA via the ribonuclease H (RNH) pathway.[129] Despite the 

potential usefulness of checkpoint blockade, concerns regarding safety and unpredictable 

response may limit their use in chronic HBV infection. Future larger studies are awaited. 

 

Genetically engineered T-cells 

 

Success of immunotherapy in cancer and demonstration of viral clearance in chronically HBV-

infected recipients of bone marrow from recovered or vaccinated donors paved the way to develop 

genetically engineered HBV-specific T-cells[130-132], including ongoing efforts utilizing chimeric 

antigen receptor (CAR) T-cells [133], T-cell receptor (TCR) gene transfer [134] and TCR activation 

via immune mobilizing monoclonal T-cell receptors against virus (ImmTAV) molecules[135]. The 

ImmTAV molecule is a fusion protein consisting of an affinity-enhanced T-Cell receptor with an 

anti-CD3 T-Cell-activating moiety that can activate and redirect T-cells against HBV infected cells 

in-vitro [135]. Preliminary evidence in an animal model demonstrate reduction of HBsAg and HBV 

DNA levels without inducing significant liver damage. Proof-of-principle of the safety and efficacy 
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of using genetically engineered T-cells expressing a HBsAg specific T cell receptor or adoptive 

transfer of autologous T cells expressing HBV-specific TCR, were demonstrated in patients with 

HBV-related HCC.[136, 137] Results from clinical studies utilizing these novel approaches in non-

HCC patients are necessary to better understand their safety profile and effectiveness. 

  

Novel therapeutic vaccines 

 

The premise behind therapeutic vaccination is to break immune tolerance and augment the HBV-

specific T-cell response to mediate functional cure (HBsAg loss). Unfortunately, previous attempts 

using multiple antigens (pre-S1/S2), peptide-based T-cell vaccines, DNA vaccines with novel 

adjuvants or nucleos(t)ide analogues were unsuccessful. Updated vaccine approaches are 

employing unique strategies to enhance vaccine efficacy including: 1) inclusion of multiple 

antigens to broaden the T-cell response (GS-4774, yeast-based vector with multiple viral antigens 

including HBsAg, HBcAg and HBX); 2) delivery systems (electroporation e.g. INO-1800 vaccine 

encoding HBsAg and HBcAg, JNJ-64300535 vaccine encoding HBV core and polymerase 

proteins); 3) novel adjuvants (INO-1800 vaccine plus INO-9112 (a DNA plasmid for IL-12)); 4) 

combination with checkpoint inhibitors; 5) use of viral vectors (primed non-replicative human 

adenovirus, chimpanzee adenovirus (ChAd), modified Vaccinia virus Ankara (MVA) and 

arenavirus). An advantage of viral vectors is they express antigen intracellularly and induce a 

robust cytotoxic T lymphocyte (CTL) response. [138] [139]  A promising approach to generate 

high levels of memory T-cells is heterologous prime/boost vaccination. In this strategy, different 

antigen delivery systems are used to sequentially administer vaccine. In pre-clinical studies, a 

MVA expressing HBV antigens was used to boost protein-prime (HBsAg and HB core antigen) 

vaccinations in wildtype and HBV-transgenic (HBVtg) mice. Protein-prime/MVA-boost vaccination 

was able to overcome HBV-specific tolerance in HBVtg mice with low and medium but not with 

high antigenemia. Using the same model system, knockdown of viral antigenemia using siRNAs 
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followed by therapeutic vaccination led to the development of polyfunctional, HBV-specific 

CD8+ T-cells, and elimination of HBV.[140] This vaccine is being tested in phase I studies. 

 

New approaches to increase immunogenicity of peptide-based vaccines include novel nasal 

formulation NASVAC [141], the Sci-B-Vac derivative BRII-179[142] and HepTcell which is 

composed of nine synthetic HBV-derived peptides formulated with IC31®, a TLR9-based 

adjuvant.  

 

Despite the many approaches and advances, none have been shown to restore immunity and 

clear infection in patients. Other strategies will therefore be required such as combination with 

potent antivirals, agents to lower viral antigen burden and other immunological boosters.  

 

Combination Therapy 

 

Given the success of combination therapy in chronic HCV infection and other infectious diseases, 

a combination approach will likely be needed to achieve durable HBV suppression, likely including 

both antiviral and immunomodulatory therapy. Almost every possible combination of agents is 

being evaluated in pre-clinical and clinical studies and results are eagerly awaited. However, a 

word of caution is in order. A recent study evaluating the combination of siRNA (JNJ-3989) with 

or without a CpAM (JNJ-6379) plus a NA, reported a surprising result in which the triple arm 

regimen (siRNA plus CpAM plus NA) had the lowest rate of response (ALT<3XULN, HBV DNA 

<LLOQ, HBeAg negative and HBsAg <10 IU/mL at end of treatment) compared to the two siRNA 

plus NA comparator arms.[143] This raises the possibility of an interaction between the CpAM 

and siRNA and suggests that not all combinations will result on synergy. 

 

Conclusion 
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Chronic HBV infection results in a chronic hepatitis that carries a lifetime risk for progression to 

cirrhosis and HCC.  Consequently, lifelong monitoring is necessary to detect disease progression 

and surveillance is recommended for individuals at increased risk for HCC. Persons at risk for 

cirrhosis and HCC should be offered antiviral treatment. Although current therapy is associated 

with improved clinical outcome it is not curative because of lack of effect on cccDNA and 

integrated HBV DNA. Stopping therapy in the absence of HBsAg loss usually leads to relapse to 

active disease in most patients and thus treatment must be administered long term.  

 

Given the global burden of disease there is an urgent need for more effective therapy. A better 

understanding of the HBV lifecycle and immunopathogenesis of persistent infection together with 

innovations in drug development and delivery have led to multiple new approaches to treat chronic 

HBV infection. A regimen to achieve functional cure will likely require a combination of agents 

including an antiviral, an agent to reduce viral antigen burden and an immunemodulator to boost 

the immune response. Complete cure will require the refinement of gene editing therapy. The 

burden of disease is greatest in low-middle income countries. Therefore, to achieve WHO 

elimination goals will require development of a safe, effective, finite duration therapy that is 

affordable. Although many challenges remain, the sheer breadth of therapeutic approaches in 

development holds great promise for curing and eliminating chronic HBV infection. 
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Table 1: Indications for Treatment by Liver Society Guidelines and World Health 
Organization. 
 

Indication AASLD EASL APASL WHO 

Cirrhosis (any 
detectable 
HBV DNA)  

Treat Treat Treat Treat 

HBeAg 
positive CHB 

Treat if: 
^ALT≥ 2 
X ULN 
and 
HBV 
DNA> 
20,000 
IU/mL 

Treat if: 
HBV DNA> 
2,000 IU/mL, 
#ALT>ULN 
and/or at least 
moderate liver 
necroinflammatio
n or fibrosis* 

Treat if: 
a. HBV DNA> 

20,000 IU/mL 
and #ALT >2 X 
ULN (if no 
concern of 
hepatic 
decompensatio
n, observe) 

b. HBV DNA 
>20,000 IU/mL 
and ALT<2 
ULN, treat if 
moderate to 
severe 
inflammation or 
fibrosis*. 

c. HBV DNA 
<20,000 and 
any ALT treat if 
moderate to 
severe 
inflammation or 
fibrosis*. 

Treat all adults 
above the age of 
30 if: 

a. HBV 
DNA> 
20,000 
IU/mL and 
#ALT 
>ULN 
(tested 3 
times 
during a 
6–12-
month 
period) 

b. ALT >ULN 
and other 
causes of 
ALT 
elevation 
have been 
excluded 
(if HBV 
DNA 
testing 
unavailabl
e) 

HBeAg 
negative CHB 

Treat if: 
ALT≥ 2 X 
ULN and 
HBV 
DNA> 
2,000 
IU/mL  

Treat if: 
HBV DNA> 
2,000 IU/mL, 
ALT>ULN and/or 
at least moderate 
liver 
necroinflammatio
n or fibrosis* 

Treat if: 
a. HBV DNA> 

2,000 IU/mL 
and ALT >2 X 
ULN (if no 
concern of 
hepatic 
decompensatio
n, observe) 

b. HBV DNA 
>2,000 IU/mL 
and ALT<2 X 
ULN, treat if 
moderate to 
severe 
inflammation or 
fibrosis*. 

HBV DNA <2,000 
IU/mL treat if moderate 
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to severe inflammation 
or fibrosis*. 

CHB 
reactivation 

Treat Treat Treat Treat 

Pregnant 
women with 
HBV DNA 
>200,000 
IU/mL on 3rd 
trimester 

Treat Treat Treat** Decision to treat 
should be based 
on regular 
treatment 
indications. No 
specific 
recommendation 
regarding 
prevention of 
vertical 
transmission 

 
^ Normal ALT defined as ≤35 and ≤25 U/L for males and females, respectively. 
# Normal ALT defined as ≤ laboratory upper limit of normal (~40 U/L) 
 
*Based on histologic assessment of liver biopsy including moderate to severe inflammation by 
either Ishak activity score >3 or METAVIR activity score above A2. Fibrosis by Ishak score > 3 or 
METAVIR >2, Elastography (Fibroscan©) > 8kPa. 
 
**If HBV DNA is above 6-7 log IU/mL 
 
ALT, alanine aminotransferase, AASLD, American Association for the Study of Liver Diseases; 
EASL, European Association for the Study of the Liver; APASL, Asian-Pacific Association for the 
Study of Liver Diseases; WHO, World Health Organization.  
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Table 2. Indications for treatment and prophylaxis 
 

Indications for treatment Indications for prophylaxis (Prevention of 
HBV transmission/re-activation) 

Decompensated cirrhosis Post-liver transplantation 

Compensated cirrhosis regardless of HBV 
DNA and ALT levels 

Post-liver transplantation from anti-HBc 
positive donor to HBsAg negative recipient 

HBV presenting with acute liver failure HBsAg positive mother during the third 
trimester with HBV DNA >200,000 IU/mL 

HBeAg positive immune active (HBV DNA 
>20,000 IU/mL and ALT >2XULN) 

HBsAg positive patients receiving 
immunosuppression/chemotherapy 

HBeAg negative immune active (HBV DNA 
>2,000 IU/mL and ALT >2XULN) 

HBsAg negative, anti-HBc positive patients 
receiving immunosuppression / 
chemotherapy and at high risk for reactivation 

HBV/HDV Co-infection with HBV DNA >2,000 
IU/mL 

 

HBV / HIV Co-infection 
 

 

HBV presenting with extrahepatic 
manifestations 

 

HBsAg positive healthcare worker with HBV 
DNA>2,000 IU/mL 
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Table 3. Efficacy of Currently Approved Agents for Therapy of Chronic Hepatitis B 
 

HBeAg positive PegIFN 
(180mcg/week 

SC) 

Entecavir 
(0.5mg/day 

PO) 

Tenofovir 
disoproxil 

fumarate (245-
300mg/day PO) 

Tenofovir 
alafenamide 

(25mg/day PO) 

Anti-HBeAg 
seroconversion 

32%1 21%2 

23%3 

21%2 

27%4 

10%2 

HBV DNA < 60-
80 IU/mL 

14%1 67%2 

94%3 

76%2 

98%4 

64%2 

ALT 
normalization 

41%1 68%2 

80%3 

68%2 

78%4 

72%2 

HBsAg loss 3-7%1 2%2 

1.4%3 

3%2 

5%4 

1%2 

HBeAg negative PegIFN 
(180mcg/week) 

Entecavir 
(0.5mg/day) 

Tenofovir 
disoproxil 

fumarate (245-
300mg/day) 

Tenofovir 
alafenamide 
(25mg/day) 

HBV DNA < 60-
80 IU/mL 

19%1 90%2 93%2 

100%4 

94%2 

ALT 
normalization 

59%1 78%2 76%2 

83%4 

83%2 

HBsAg loss 4%1 0%2 0%2 

3%4 

0%2 

 
Table adapted from EASL Clinical practice guidelines J Hepatol 2017; 67:370-398 and Terrault N 
et al Hepatology 2018; 67:1560-1599. 
 
pegIFN, pegylated interferon alfa-2a; HBeAg, hepatitis B e antigen; HBsAg, hepatitis B s antigen; 
ALT, alanine aminotransferase.  
 
ALT normalization defined by laboratory upper limit of normal 
 
1Evaluated 6 months following 48-52 weeks of treatment 
2Evaluated at 48-96 weeks of continuous therapy 
3The entecavir long-term cohort consisted of 183 HBeAg positive patients who received ≥1 year 
of entecavir 0.5 mg in the registration trial (ETV-022) and then entered long-term treatment (ETV-
901) with a treatment gap ≤35 days. In ETV-901 the entecavir dose was increased to 1.0 mg 
daily.[144] 
4 Results based on a sub-set of patients 203/641 (32%) HBeAg‐positive (n=80) and HBeAg‐
negative (n=118) patients who were initially randomized and treated and who were followed for 
10 years.[93] 
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Table 4. Direct and Indirect Antiviral Agents Currently in Development 
 

Target  Mechanism of 
Action 

Agent in 
Development 

Current Stage of 
Development 

Direct     

Viral Entry Blockage of the 
NTCP receptor 

Bulevirtide Phase 3* 

Hepalatide Phase 2 

Monoclonal antibody 
against the pre-S1 
domain 

VIR-3434 Phase 1 

Viral Transcription mRNA disruption by 
siRNA 

JNJ-3989 Phase 2 

AB-729 Phase 2 

RG6346 Phase 2 

VIR-2218 Phase 2 

 ALG-125755 Phase 1 

 BB-103 Pre-Clinical 

mRNA disruption by 
ASO 

Bepirovirsen Phase 2 

IONIS-HBVLRx Phase 2 

Core Protein Capsid Inhibitor EDP-514 Phase 2 

Morphothiadin Phase 2 

RG7907 Phase 2 

Vebicorvir Phase 2 

JNJ 56136379 Phase 2 

ABI-H3733 Phase 1 

AB-836 Phase 1 

ALG-000184 Phase 1 

QL-007 Phase 1 

VNRX-9945 Phase 1 

ZM-H1505R Phase 1 

GLP-26 Pre-Clinical 

ABI-4334 Pre-Clinical 

cccDNA Reducing HBX 
expression 

Pevonedistat Pre-Clinical 

Dicoumarol Pre-Clinical 

HBV polymerase Prodrugs of 
nucleotide analogues 

Pradefovir Phase 3 

HS-10234 Phase 3 

NCO-48 fumarate Phase 1 

Non-chain 
terminating 
nucleotide analogue 

AT-2173 Phase 2 

HBsAg release Nucleic Acid 
Polymers (NAPs) 

REP 2139/2165 Phase 2 

S-Antigen Transport-
inhibiting 
Oligonucleotide 
Polymer (STOPS) 

ALG-010133 Discontinued 

Indirect    

Innate immunity TLR 7 agonist Vesatolimod Phase 2 

RG7854 Phase 1 

TLR 8 agonist GS-9688 Phase 2 
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SBT 8230 Preclinical 

Adaptive immunity Checkpoint inhibitor Nivolumab Phase 2 

Envafolimbab 
(ASC22) 

Phase 2 

Immune Mobilizing 
Monoclonal T-cell 
Receptors Against 
Virus (ImmTAV) 

IMC-I109V Phase 1/2 

Therapeutic vaccines DNA vaccines GS-4774 Phase 2 

HB-110 Phase 1 

INO-1800/9112 Phase 1 

JNJ-64300535 Phase 1 

MVA-HBV (VTP-300) Phase 1 

TG1050  Phase 1 

VRON-0200 Preclinical 

T-cell or B-cell 
epitope vaccine 

εPA-44 Phase 3 

FP-02.2 (HepTcell) Phase 2 

HBV envelope 
antigen vaccines 

NASVAC Phase 4 

BRII-179 Phase 2 

VVX001 Phase 2 

NTCP, sodium taurocholate co-transporting polypeptide; HBX, HBV X protein; HBsAg, HBV 
surface antigen; cccDNA, covalently closed circular DNA; siRNA, small interfering RNAs; ASO, 
antisense oligonucleotides. 
 
*For HBV/HDV co-infection not HBV monotherapy. 
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Figure Legends 
 
Figure 1: HBV lifecycle and targets of drug development 
 
Viral entry is a multi-step process beginning with viral attachment to the hepatocyte surface via a 

loose interaction with heparan sulfate proteoglycans[145]. This is followed by stronger interaction 

between the pre-S1 domain and the hepatocyte bile salt transporter, the sodium taurocholate co-

transporting polypeptide (NTCP) which facilitates entry[146]. The NTCP receptor confers species 

specificity to HBV. Viral entry is thought to occur via endocytosis. Following entry, there is 

uncoating and release of the partially double-stranded, relaxed circular DNA genome (rcDNA), 

which is transported to the hepatocyte nucleus where host cellular enzymes repair the rcDNA to 

form the covalently closed circular DNA (cccDNA). cccDNA serves as the transcriptional template 

for all mRNAs including the pre-genomic RNA, which also serves as the template for genome 

replication. Viral transcription and translation are under the control of viral promoters and 

enhancers. Four viral transcripts, polymerase, core, surface, and X are transported to the 

cytoplasm where they are translated into 7 viral proteins. In the cytoplasm, core proteins self-

assemble and through an encapsidation reaction, the pgRNA and viral polymerase are packaged 

to form the nucleocapsid. Viral replication occurs within the nucleocapsid through a reverse 

transcription step. The mature viral capsids containing rcDNA are then enveloped with the small, 

medium, and large (S, M, L) surface proteins in the endoplasmic reticulum and secreted from the 

infected cell as intact virions, (Dane particle), or transported back to the nucleus to replenish the 

cccDNA pool. Several sub-viral filamentous and spherical particles that are devoid of viral DNA 

are also produced in vast excess of the Dane particle. 

 

1)Targeting viral entry; 2) Targeting covalently closed circular DNA (cccDNA) via elimination or 

silencing; 3) Targeting viral transcription 4) Targeting the HBV core protein; 5) Targeting the 

HBV polymerase; and 6) Targeting hepatitis B surface antigen (HBsAg) secretion. 
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Figure 2: Immune subsets involved in HBV pathogenesis and approaches for immune-

modulatory therapy. 

Multiple immune subsets participate in virus control and disease pathogenesis in chronic hepatitis 

B. Adaptive immune modulatory approaches in exploration include augmentation of antiviral T 

and B cells by therapeutic vaccination, checkpoint inhibition (e.g.  blockade of PD1/PDL1 or 

CTLA4/CD28 interactions) as well as supplementation by providing engineered T-cells or 

antibodies.  Innate immune modulatory include IFN alpha (already in clinical use with pleiotropic 

antiviral and immune modulatory effects) in addition to evolving clinical and pre-clinical 

evaluations for cellular antiviral pathways including agonists for toll like receptors (e.g TLR7/8), 

RIG-I,* STING agonists and lymphotoxins. 

*No longer in clinical development 
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Supplementary Table 1. Available HBV vaccines for adults, dosing schedules and target 
populations for vaccination. 
 

Vaccine Dose Schedule Target Population 

*Recombivax 
HB 

Adults: 10 
mcg HBsAg 
(1.0 mL) 
Predialysis and 
Dialysis Patient: 
40 mcg (1.0 
mL) 

3 doses at 
0, 1, 4-6 
months 

1. Sex partners of hepatitis B-positive 

persons 

2. Sexually active persons who are not in 

a long-term, mutually monogamous 

relationship (e.g., persons with more 

than one sex partner during the 

previous 6 months) 

3. Persons seeking evaluation or 

treatment for a sexually-transmitted 

disease 

4. Men who have sex with men  

5. Persons who inject drugs 

6. Household contacts of hepatitis B-

positive persons 

7. Persons born in countries where 

hepatitis B infection is endemic should 

be tested and vaccinated if susceptible 

8. International travelers to regions with 

high or intermediate rates of endemic 

hepatitis B infection 

9. Health care and public safety workers 

that may be exposed to blood or 

blood-contaminated body fluids 

10. Residents and staff of facilities for 

developmentally disabled persons, 

corrections facilities, and other 

facilities that serve adults at risk for 

hepatitis B infection  

11. Persons with end-stage renal disease, 

including pre-dialysis, hemodialysis, 

*Engerix-B 
 

20 mcg HBsAg 
(1.0 mL) 
 

3 doses at 
0, 1, 4-6 
months  

Heplisav-B 20 mcg of 
HBsAg and 
3000 mcg of 
CpG 1018 
adjuvant (0.5 
mL) 

 

2 doses at 
0 and 1 
month.  

PreHevbrio  10 mcg HBsAg 
(S, pre-S1 and  
pre-S2) (1.0 
mL) 
 

3 doses at 
0, 1, 6 
months 

Twinrix 
(Hepatitis B 
vaccine 
combined 
with 
Hepatitis A 
vaccine 
 

Hep A as 
Havrix 720 
El.U, Hep B as 
Engerix-B 20 
mcg 
 

3 or 4 
doses 
 0, 1, 6 
months   
or   
0, day 7, 
day 21-30, 
12 months 
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peritoneal dialysis, and home dialysis 

patients 

12. Persons with chronic liver disease 

13. Persons to age 60 years with diabetes 

14. Persons with HIV infection 

15. All other persons seeking protection 

from hepatitis B infection. 

 
*There should be at least 4 weeks between doses 1 and 2, and at least 8 weeks between doses 
2 and 3.  
 
*The minimum interval for the overall series from dose 1 to final dose is 4 months (16 weeks). 
 
Notes 
Testing for immune response should be done 1-2 months after dose completion. 

 
In the absence of an immune response to the vaccine doses, a repeat series is advised. 
 
Hemodialysis patients are at risk for loss of immunity and should be tested annually for anti-HBS. 
In cases where anti-HBs levels fall <10 mIU/mL a booster dose of vaccine should be given.  
 
Immunocompromised patients should receive a double vaccine dose 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Jo
urn

al 
Pre-

pro
of



 3 

Supplementary Table 2. Available HBV vaccines for infants, children and adolescents 
and dosing schedules. 
 

Vaccine Dose Schedule 

Infants/children/adolescents   

*Engerix-B 
#Birth through 19 years 

 
10 mcg HBsAg (0.5 mL) 
 

 
3 doses at 0, 1, and 6 months 

*Recombivax HB 
#Birth through 19 years 
Adolescents 11 through 15 
years 

 
5 mcg (0.5 mL) 
10 mcg (1.0mL) 

 
3 doses at 0, 1, and 6 months 
2 doses at 0- and 4-6-months 

Pediarix (Hepatitis B Vaccine 
combined with Diphtheria and 
Tetanus Toxoids and Acellular 
Pertussis Adsorbed, and 
Inactivated Poliovirus 
Vaccine) 

10 mcg HBsAg (0.5 mL) 3 doses at 2, 4, and 6 months 
of age  

Vaxelis (Hepatitis B Vaccine 
combined with Diphtheria and 
Tetanus Toxoids and Acellular 
Pertussis, Inactivated 
Poliovirus, Hemophilus b 
Conjugate) 

10 mcg HBsAg (0.5mL) 

 

3 doses at 2, 4, and 6 months 
of age  
 

 
*Engerix-B is approved for use in individuals of all ages. 
 
*Recombivax HB is approved for use in individuals of all ages.  
 
*Pediarix may be given as early as 6 weeks of age through 6 years of age (prior to the 7th 
birthday)  
 
*Vaxelis is approved for use as a 3-dose series in children from 6 weeks through 4 years of age 
(prior to the 5th birthday)  
 
#Birth dose should be administered within 24 hours of birth 
 
HBsAg Hepatitis B surface antigen 
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Supplementary Table 3a. Performance characteristics of non-invasive tests for evaluation 
of advanced fibrosis* in CHB. 
 

 Cut-off 
for 

detection 
of 

advanced 
fibrosis 

AUROC Sensitivity Specificity Positive 
predictive 

value 

Negative 
predictive 

value 

APRI1, 2 >0.5 0.68-
0.87 

 

70-84% 50-69% 52-64% 53-84% 

FIB-42, 3 >1.5 0.77 65-70.4% 70.2-73.6% 76.2% 43-81.4% 

Transient 
Elastography4 

8.8 kPa  59% 85% 58% 82% 

       

Shear Wave 
Elastography5, 6 

8.1kPa  94.9% 73.1% 77.0%c 97.4%c 

 
*Advanced fibrosis defined as ≥F2 Metavir or ≥F3 Ishak fibrosis stage 
 
a Overall estimation in a population with assumed 15.9% severe fibrosis and 16% cirrhosis due to 
either HBV, HCV and NAFLD.  
 
Non-invasive tests perform better at excluding than establishing advanced fibrosis/cirrhosis. 
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Supplementary Table 3b. Performance characteristics of non-invasive tests for evaluation 
of cirrhosis in CHB. 
 

 Cut-off 
for 

detection 
of 

advanced 
fibrosis 

AUROC Sensitivity Specificity Positive 
predictive 

value 

Negative 
predictive 

value 

APRI1, 2 >2.0 0.75 28-73% 70-87% 18-36% 82-97% 

FIB-42, 7 >3.25 0.75 16.2-17.4% 95.2-97.1% 44-62.2 % 46.8% 

Transient 
Elastography5, 6 

11 kPa  81% 83% 20%a, 
67%b 

99%a, 
91%b 

       

Shear Wave 
Elastography5, 6 

11.5kPa  79.9% 93.3% 48.3%c 95.4%c 

 
*Cirrhosis defined as F4 Metavir or F5-6 Ishak fibrosis stage 
 
a In a population with assumed low prevalence (5%) of cirrhosis. 
 
b In a population with assumed high prevalence (30%) of cirrhosis 
 
c Overall estimation in a population with assumed 15.9% severe fibrosis and 16% cirrhosis due to 
either HBV, HCV and NAFLD.  
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Supplementary Table 4. Management of CHB in Special Populations 
 

 Indication for 
treatment 

Recommended 
treatment 

Screening for HCC 

Hepatitis C Virus 
(HCV) 

Treat if HBsAg 
positive or if evidence 
of HBV reactivation 
Standard treatment 
indications for HBsAg 
positive persons 
apply 

TDF, TAF or ETV *Screening by US 
recommended every 
6 months 

Hepatitis D Virus 
(HDV) co-infection 

Treat if cirrhotic, if 
active HBV 
replication and prior 
to treatment initiation 
for HDV 

TDF, TAF or ETV *Screening by US 
recommended every 
6 months 

Human 
immunodeficiency 
virus (HIV) 

Treatment 
recommended for all 
patients using a 
regimen that includes 
2 drugs active 
against HBV 

TDF or TAF plus 
lamivudine or 
emtricitabine. 

*Screening by US 
recommended every 
6 months 

Immunosuppressed 
patient 

Treatment indicated 
for patients with 
moderate-high risk 
for reactivation (see 
text) or if evidence of 
reactivation present 

TDF, TAF or ETV. 
Start 2-4 weeks prior 
to 
immunosuppression 
and continue until 
immune 
reconstitution occurs 
(moderate risk) or 12-
18 months after 
stopping 
immunosuppression 
(high risk) 

Consider screening 
based on individual 
risk 

Decompensated 
Cirrhosis 

Treatment indicated. 
Patients with MELD 
score ≥15 should 
also be referred for 
transplant evaluation 

TDF, TAF or ETV. 
pegIFN 
contraindicated 

*Screening by US 
recommended every 
6 months 

Acute HBV infection Treatment indicated if 
features of acute liver 
failure manifest 
including INR > 1.5, 
total bilirubin > 3 
mg/dL, 
encephalopathy, 
ascites 

TDF, TAF or ETV. 
pegIFN 
contraindicated 

No indication for 
screening among 
individuals who 
recover from acute 
infection 

Post-liver transplant  Lifelong prophylactic 
treatment indicated 
for those 

TDF, TAF or ETV. 
HBIG use should be 

Consider screening 
based on individual 
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transplanted for HBV-
liver disease. 

considered on 
individual basis 

risk e.g. Cirrhosis in 
allograft 

Post-non-liver solid 
organ transplant 

Lifelong treatment 
indicated in patients 
who are HBsAg 
positive. Patients with 
evidence of past 
infection (HBsAg 
negative, anti-HBc 
positive) should be 
closely monitored 
and prophylactically 
treated during 
intense 
immunosuppression 

TDF, TAF or ETV. Consider screening 
based on individual 
risk  

Children (2 to <18 
years of age) 

Treatment indications 
same as adults. 
Treatment indicated 
among HBeAg 
positive patients with 
elevated ALT and 
detectable HBV DNA 
with the goal of 
HBeAg 
seroconversion 

PegIFN, TDF or ETV. Consider screening 
based on individual 
risk (presence of 
advanced fibrosis 
and family history of 
HCC) 

 
TDF, Tenofovir disoproxil fumarate; TAF, Tenofovir alafenamide; ETV, entecavir, pegIFN; 
pegylated interferon alfa-2a, HBIG, Hepatitis B Immune Globulin; HCC; Hepatocellular 
carcinoma; US, ultrasound, MELD, Model for End-stage Liver Disease. 

 
*The AASLD guideline for HCC recommends US surveillance every 6 months for persons at 
high risk of HCC. There is insufficient evidence for or against the addition of AFP every 6 
months to screening algorithms. AFP alone is not recommended except in those circumstances 
where US is unavailable or cost is an issue. 
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HBV Prevention 
 
Vaccination of individuals at high risk for exposure including infants born to chronic carriers, and 

those at high risk for chronicity such as immunocompromised patients, is a critical component of 

infection control. Administration of birth dose vaccine which is critical for interrupting mother-to-

infant transmission and for success of HBV elimination programs remains low. Globally less than 

38% of babies born worldwide received the birth dose vaccine within 24 hours after birth. 
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Management of Controversial Patients (Immune tolerant, Inactive Carriers and Grey 

Zone/Indeterminant) 

 

An alternate and more simplified approach to treatment being put forth by some experts, but not 

endorsed by any of the major liver society guidelines, is a “treat all” approach in which any HBsAg 

positive individual with detectable viremia regardless of ALT level would receive treatment. In the 

case of HBeAg positive patients with markedly elevated HBV DNA (>108 IU/mL) and normal ALT 

levels (immunetolerant or HBeAg positive chronic infection with no clear evidence of 

hepatocellular damage), the recommendation to treat is driven by a desire to limit the risk for HBV-

specific T-cell depletion, DNA integrations that drive HCC risk, silent fibrosis progression, and risk 

of transmission. Indeed, this approach is supported by the Risk Evaluation of Viral Load Elevation 

and Associated Liver Disease (REVEAL) study8, 9 which showed a relationship between elevated 

HBV DNA levels and subsequent development of cirrhosis and HCC and a Korean study that 

reported untreated immunetolerant patients had a 2-fold higher incidence of HCC, 1.05 vs 0.51 

per 100 patient-years, and death/liver transplantation, 0.76 vs 0.32 per 100 patient-years,  than 

nucleos(t)ide analogue treated patients in the immuneactive-phase.10 In addition, a small 

retrospective study of untreated HBeAg positive patients with elevated HBV DNA and normal ALT 

levels who underwent liver biopsy noted significant histology, defined as ≥stage 2 fibrosis or stage 

1 fibrosis plus ≥grade 2 inflammation, among older patients - 22% among 36-50 years and 45% 

among >50 years compared to none ≤35 years.11 However, as data from the REVEAL study was 

obtained from an older, predominantly male, HBeAg negative cohort, caution is advised in 

extrapolating to a younger HBeAg positive cohort. Also, in the study from Korea, the HCC risk 

was lowest among patients with highest HBV DNA levels and normal ALT levels (true 

immunetolerant patients). Furthermore, there is currently no evidence that lowering viral load 

would necessarily reduce HCC incidence in patients with immunetolerant disease. Moreover, 

spontaneous HBeAg seroconversion occurs in a majority of patients with low rates of progression 
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to HBeAg negative immuneactive disease, cirrhosis or HCC.12 Additionally, several studies 

demonstrate that achieving undetectable HBV DNA is challenging in this population. In one 

randomized study comparing TDF/placebo to TDF/emtricitabine for 192 weeks among 126 

immunetolerant patients only 55% and 76%, respectively, were able to achieve HBV DNA <69 

IU/ml and 5% HBeAg seroconversion.13 In another trial of pegylated interferon plus ETV for 48 

weeks, no patient achieved the primary endpoint of HBeAg loss and HBV DNA ≤ 1,000 IU/mL 48 

weeks after end of treatment.14 Finally integration cannot be prevented, and paired liver biopsy 

studies showed minimal if any fibrosis progression in patients with immunetolerant disease.15 On 

balance, the data support current recommendations that true immunetolerant patients (HBV DNA 

>108 with normal ALT) have a good prognosis and do not require treatment, at least in the short 

term. Older patients ≥35 years should be evaluated for treatment on an individualized basis. 

 

The argument for treating inactive carriers is less convincing and is based on small retrospective 

studies suggesting significant histological disease in a proportion of inactive carriers. In one study, 

among 97 patients with three normal ALT levels and HBV DNA <2,000 IU/ml, 19% were found to 

have ≥F2 stage fibrosis.16 However, the patient’s disease status before classification as an 

inactive carrier was unknown and it is possible that fatty liver disease may have contributed to the 

observed fibrosis as more than three-quarters of patients were overweight or obese. Inactive 

carriers may achieve high rates of HBsAg loss which favors treatment of this population. A non-

randomized study of pegylated interferon with or without adefovir compared to no treatment 

among inactive carriers reported HBsAg loss after 96 weeks of therapy in 45% who received 

pegylated interferon, 38% in those who received combination therapy compared to 2% among 

untreated patients.17 Despite these data the majority of studies report favorable clinical outcomes 

among inactive carriers. For example, among 3,673 HBeAg negative carriers with a normal ALT 

level, those who maintained a normal ALT level and who did not have hepatic steatosis, n=1,476, 

rates of cirrhosis, HCC and liver-related death were 0.9%, 0.1% and 0% after 13.4 years of follow-
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up. Similarly, among 1,932 inactive carriers followed for a mean of 13.1 years in the REVEAL 

cohort, the annual incidence rates of HCC and liver-related death were 0.06% and 0.04%, 

respectively.18 Whether, patients who developed outcomes had underlying cirrhosis or remained 

as inactive carriers during follow-up could not be determined. Given the low rate of complications, 

many patients who likely would not benefit from treatment, would have to be treated to prevent 

complications from developing. Therefore, we do not support therapy of inactive carriers unless 

there are other factors associated with poor outcome present such as elevated HBsAg levels. 

Inactive carriers do need continual monitoring as previously discussed. 

 

There is more controversy whether indeterminate/grey zone patients should receive treatment. 

Some studies suggest high rates of HCC and other clinical outcomes among HBeAg negative 

patients with elevated HBV DNA and mildly elevated ALT levels or who do not meet criteria for 

treatment according to APASL, AASLD and EASL guidelines and that such patients may benefit 

from treatment.19-21 A retrospective analysis of 3,366 predominantly Asian patients of whom 1,303 

were in the indeterminate phase and followed for a mean of 12.5 years reported a significantly 

higher 10-year cumulative incidence of HCC among those who remained in the indeterminate 

phase compared to those who remained as inactive carriers, 4.6% versus 0.5%.22 The HCC rate 

was notably higher in those older than 45 years. One concern with the results was the infrequent 

monitoring of patients. Over a mean follow-up of 12.5 years, the mean number of HBV DNA tests 

was 3.4 and ALT tests 8.1 with a mean time between ALT tests of 16 months. This long duration 

between monitoring meant that there could have been patients who transitioned to the active 

phase and should have been treated, who might have been missed. However, other studies from 

Europe and the U.S. report very low rates of HCC 0 to <1% over 4-8 years of follow-up. 

Interestingly, the TORCH study, comparing TDF to observation for patients with mild disease 

defined as HBV DNA >2,000 IU/mL and minimally raised serum ALT levels >1 to <2 x ULN 

reported that treated patients had a significantly lower rate of fibrosis progression (defined as an 
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increase in Ishak Fibrosis by >1 point) compared to no treatment, 26% versus 47%. However, 

this study included both HBeAg positive and negative patients and the role of treatment in 

preventing clinical outcomes such as HCC was not evaluated. Future studies are needed to 

address management of indeterminate patients. Until such results are available, we recommend 

a “case by case” approach, considering presence of risk factors for disease progression and HCC 

and patient’s willingness for treatment for cases outside the guideline treatment criteria.  
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